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1. KKT. Consider the set

S = {(x, y) | 0 ≤ x ≤ 2π and 0 ≤ y ≤ sin(x) + 2}

and the cost function f(x, y) = −y that we want to minimize.

1. Draw the search space.

2. Is the problem convex?

3. Do CQs hold globally?

4. Write down the KKT conditions.

5. Find all KKT points and all stationary points.

6. Find all local and global minima.

7. How does your answer change if the set is

S = {(x, y) | 0 ≤ x ≤ 2π and 0 ≤ y ≤ sin(x) + 1}

instead? In particular, is LICQ or MFCQ holding at the point (3π/2, 0)?

To train you may want to revisit this exercise for a general linear cost function f(x, y) =
x cos(θ) + y sin(θ) with parameter θ ∈ [0, 2π[.

Answer.

1. See Figure 1.

2. The problem is not convex because S is not convex.

3. CGs hold globally. We can check this using LICQ.

4. We rewrite the set as S = {(x, y) ∈ R2 | gi(x, y) ≤ 0 for i = 1, 2, 3, 4} where

g1(x, y) = −x g2(x, y) = x− 2π

g3(x, y) = −y g4(x, y) = y − sin(x)− 2.
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Figure 1: Search space S.

We find

∇g1(x, y) =

[
−1
0

]
∇g2(x, y) =

[
1
0

]
∇g3(x, y) =

[
0
−1

]
∇g4(x, y) =

[
cos(x)

1

]
.

A point (x, y) ∈ S is KKT if there exists λ ≥ 0 such that

−∇f(x, y) = λ1∇g1(x, y) + λ2∇g2(x, y) + λ3∇g3(x, y) + λ4∇g4(x, y)

and λigi(x, y) = 0 for i = 1, . . . , 4.

5. Stationary points and KKT points coincide because CQs hold globally.

For all (x, y) ∈ S we have ∇f(x, y) =
[
0 1

]⊤
. In the interior of S there is no KKT point

because the gradient is always non-zero. For a point to be KKT we find that the fourth
constraint must be active. This yields 3 KKT points on the boundary:

p1 =

[
π
2

3

]
, p2 =

[
3π
2

1

]
, and p3 =

[
2π
2

]
.

6. Local (hence global) minima are stationary. The point p1 is clearly the unique global
minimum.

The point p3 is a local minimum. There is a neighborhood U of p3 such that for all
(x, y) ∈ U ∩ S we have f(x, y) ≥ f(p3).

The point p2 is a saddle point (stationary but not a local minimum). To see this we define
the curve c(t) = (3π

2
+ t, sin(3π

2
+ t) + 2). We find that c(0) = p2, c(t) ∈ S for t small

enough, and f(c(t)) < f(c(0)) for small enough t > 0.

7. See Figure 2. Nothing changes except for the point
[
3π
2

0
]⊤

. We cannot apply LICQ
and MFCQ to show that CQs hold. However if we compute the tangent cone and the
cone of linearized feasible directions we can check that they are the same.

■
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Figure 2: Search space S.

2. KKT (bis). Consider the problem

min
x,y∈R

−2x+ y subject to

{
(1− x)3 − y ≥ 0

y + 1
4
x2 − 1 ≥ 0.

The optimal solution is x⋆ = (0, 1)⊤, where both constraints are active.

1. Do CQs hold at x⋆?

2. Is x⋆ stationary?

3. Is x⋆ a KKT point?

Answer the same questions for the optimization problem

min
x,y∈R

y subject to x2 − y3 ≤ 0,

where the global minimum is x⋆ = (0, 0)⊤.

Answer. See Figure 3 for the search space of the first optimization problem.
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Figure 3: Search space {(x, y) | (1− x)3 − y ≥ 0 and y + 1
4
x2 − 1 ≥ 0}.
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1. LICQ holds at x⋆.

2. The point x⋆ is stationary because it is a global minimum.

3. The point x⋆ is KKT because CQs hold at x⋆.

See Figure 4 for the search space of the second optimization problem.
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Figure 4: Search space {(x, y) | x2 − y3 ≤ 0}.

1. We define g(x, y) = x2 − y3 and S = {(x, y) | g(x, y) ≤ 0}. Then ∇g(x, y) = (2x,−3y2)⊤.
The gradient at x⋆ is zero so we deduce that Fx⋆S = R2. Clearly Tx⋆S is not R2 so CQs
do not hold.

2. The point x⋆ is stationary because it is a minimum.

3. The point x⋆ is not KKT because ∇g(x⋆) = 0 and ∇f(x⋆) ̸= 0.

■

3. Convex constraints. In the lecture we showed that the set

S =
{
x ∈ E | hi(x) = 0, i = 1, . . . , p, and gi(x) ≤ 0, i = 1, . . . ,m

}
is convex if the functions h1, . . . , hp are affine and the functions g1, . . . , gm are convex.

1. Provide an example of a non-convex set S where all the functions g1, . . . , gm are convex
but one function hi is not affine.

2. Provide an example of a non-convex set S where all the functions h1, . . . , hp are affine but
one function gi is non-convex.

Answer.

1. We define

S = {x ∈ E | h(x) = 0 and g(x) ≤ 0}

where h(x) = ∥x∥2 − 1 and g(x) = x1 + · · ·+ xn. The set S is not convex.
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2. We define

S = {x ∈ E | h(x) = 0 and g(x) ≤ 0}

where h(x) = x1 + · · ·+ xn and g(x) = 1− ∥x∥2. The set S is not convex.

■

4. Quadratic constraints. Sometimes quadratically constrained programs can be solved
efficiently.

1. We let S = {x ∈ Rn | x⊤Ax+ b⊤x+ c ≤ 0} where A ∈ Rn×n, b ∈ Rn, c ∈ R. Show that S
is convex if A ⪰ 0.

2. Suppose A ≻ 0 and let d ∈ Rn. Find a solution for the minimization problem

min
x∈S

d⊤x

where S = {x ∈ Rn | x⊤Ax ≤ 1} and A ≻ 0.

Answer.

1. The function x 7→ x⊤Ax+b⊤x+c is convex because A ⪰ 0. The set S is the zero sublevel
set of that map so we conclude that it is convex.

2. We find that

S = {x ∈ Rn | x⊤Ax ≤ 1}
= {A−1/2y | y ∈ Rn, y⊤y ≤ 1}

so the optimization problem is equivalent to

min
x∈S′

d⊤A−1/2y

where S ′ = {y ∈ Rn | y⊤y ≤ 1}. The gradient is g = A−1/2d and since we minimize a
linear function on the unit ball the solution is

y∗ = − g

∥g∥ .

■
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